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Abstract  
The present paper deals mainly with the improvement of the degradation indicators of a gas turbine. 

Therefore, to achieve this purpose a prognostic approach is used in order to provide an adequate diagnostic 
function of the studied gas turbine.  In this context, this paper proposes a degradation modeling of the studied 
gas turbine system in order to increase its safety and to ensure accurate future decision making process that 
allow to enhance the operating state of this industrial equipment. Indeed, the prognostic system proposed in 
this work takes into account the eventual vibration impacts over all phases of the life cycle process of the 
studied system to provide a diagnostic function with the required availability at with lowest maintenance cost.  
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1. INTRODUCTION  

Nowadays, the early failure forecasting and 
failure detection in industrial plants equipments are 
attracting more attention, both in theory and 
application from researchers and industrial plants 
owner. Indeed, when a failure appears on industrial 
plants equipment, on-site experts try to identify the 
exact causes of the failure or fault damages based 
on the available obtained indications that may guide 
them to final identification. Especially, when the 
idea of the type of failure is known, they search for 
the cause in a family of probable causes and based 
on a elimination process, they can find the most 
likely cause of the considered failure. However, 
with the modernization of industrial equipments 
through the appearance of a new high range of 
technologies that lead to more complex systems 
with high costs, the aforementioned approach for 
finding the real cause may take more time and has 
become almost difficult to identify the cause of 
failure under such constraints, this kind of problems 
push the experts forward to look for new solutions. 
On the other side; the increasing of the number of 
economics challenges of all industrial companies 
pushed them for looking to a more  reliable and 
optimized operation of their equipments in order to 
improve the productivity by ensuring its availability 
and its quality under the compliances of safety and 
environment compatibility imposed by the usual 
standards.  

The failure prognostic prediction is the residual 
life which is called the Remaining Useful Life 
(RUL). Indeed it is a relatively new area of research 

to the scientific community which is attracting a 
more increasing attention. This approach is 
designed to estimate the probability that a failure 
can be occurred at a given future time. Using failure 
prognostic system, it is possible to estimate the 
remaining useful life (RUL) of equipment or a 
component of equipment within an industrial plant 
under a given operating conditions. Consequently, 
the main role of the prognostic system is to answer 
to the following questions: How much time is 
needed for the intervention to ensure the corrections 
or the maintenance of a considered system? And 
what will be the impact of this prognostic goal on 
the production targets? 

To answer to these questions, several studies 
have been achieved in this area [4, 6, 10-14 and 
17]. Indeed, the failure prognostic approaches can 
be divided into three main categories as illustrated 
in Figure 1. Whereas, it is obvious that the 
prognostic approach should be selected based on 
models and knowledge of a given system.  

However, in several industrial applications to 
ensure equipment diagnostics, different methods 
have been proposed to find solutions dealing with 
fatigue problems, depending on the choice of the 
measurement variables and the fatigue criterion for 
the determination of the lifetime of these 
equipments. Indeed, the rule of Miner supposes that 
there is no influence of the timing application of the 
loads, that is to say no effect of vibration order. 
Where, fatigue cycling tests are of large amplitude 
of vibration, followed by small amplitude up to 
rupture, and the reverse for small amplitude which 
are followed by large amplitude of vibration, this 
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shows that vibrations accumulation is not linear 
because it is non-commutative. However, in many 
cases, the different amplitude cycles of vibration 
are mixed, linear accumulation is most used in the 
most reliable fatigue tests. In 1924, Palmgren in 
[18] proposed an equation to take into account the 
inflection point, i.e the beginning of malfunction of 
the system under vibrations. In this work, the model 
of Miner is proposed, due to its simplicity and ease 
of implementation, to address the case of sequences 
of variable amplitude of vibration load of the 
studied gas turbine.  

Therefore, the prognostic process is an 
important issue in real plants applications to predict 
the future state of a process after each behavior 
change detection in the considered process [4, 8, 13 
and 15]. This paper focuses on building a 
prognostic system of a gas turbine which is 
installed at the gas compression station of Hassi 
R'Mel in south of Algeria, where the main aim is to 
ensure an adequate maintenance  schedule strategy 
for this type of equipment. 

 
2. PRONOSTIC SYSTEM 

The estimated Remaining Useful Lifetime 
(RUL) is very useful in practical industrial 
application, it indicates the estimated lifetime  
before the considered equipment undergoes a 
failure. It is mostly used to make an accurate 
decision of the maintenance schedule, whether to 
do it, or to delay it, depending on industrial plant 
state operation constraints, such as the production 
requirements. where the main aim is to avoid 
unnecessary maintenance expenses and sudden 
equipment breakdown  [16, 20 and 22]. The 
prediction of this time can be achieved using the 
prognostic approaches that are based mainly on the 
evaluation of the studied systems operation 
behaviours during the previous and actual times. 
Indeed, an adequate forecasting of this time is 
considered to be an important task for ensuring the 
reliability system [2, 5, 20 and 22].  
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Fig. 1. Prognostic approaches [5] 

In practical, the prognostics and health 
management (PHM) solutions are increasingly 
attracting more attention, both in theory and 

applications, where the main aim is to be 
implemented in important industrial plants in order 
to complete the maintenance activities accurately. 
This last task can be achieved by the estimation of 
the remaining useful life (RUL) of a system which 
is by definition the remaining time to a system to 
fall in failure, it is a random variable and cannot be 
predicted with certainty. For a rotating machine, 
which is the case of a gas turbine presented in this 
paper. It suffers from the high vibration 
phenomenon stress resulting from the high-cycle 
fatigue due to the crucial rotational motion of such 
systems. Indeed the estimation of the remaining 
useful file is based on the measurement and 
observation of the signals obtained by the  vibration 
sensors during the normal operation of such 
machines.  

In the case studied in this work over a period of 
observation of these constraints, which causes the 
creation of vibrations, the remaining useful life will 
be calculated using the reliability model ΘR  as a 
function of the failure probability ΘP  of system, as 
follows: 

),...,)((),...,( 11 nn XXLtXPXXtR pΘΘ =    (1) 

where ( )nXX ,...1  are the system state, t is the 
observation time, Θ  is the usage conditions of the 
rotating machine, L  is the degradation threshold. 

In the case of stress degradation at the same 
time in several observation time ST , the reliability 
of the machine, is given by: 
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The degradation process depends on the number 
( n ) of stress resulting from the high-cycle fatigue 
due to rotational motion. Therefore, the evaluation 
of the RUL requires the knowledge of the number 
of accidental peak vibrations occurring before the 
current time 0t , depending on the mode of 
operation of the machine. In the normal mode, there 
is not stress degradation; the estimated number of 
previous stress degradation will be calculated 
through the distribution of Weibull reliability, with 
the use of the method of maximum likelihood or the 
method of moments, given by:  

( ) ( )11 ,*, βταβα n=                    (3) 

where α  is the scale parameter (characteristic 
life),  β   is the  shape parameter (slope) and τ  is 
the location parameter (failure free life), used in the 
3-Parameter of Weibull reliability. 

In the case of degraded mode, the estimated 
number of previous stress degradation is 
detected during operation of the equipment. Indeed, 
it can be estimated through the cumulative sum 
method (CUSUM). This method allows the 
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detection of the mode changes to TNt Δ= . , the 
statistical variable for detection of such changes N  
are given by [9, 19]:  
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where m  is the expected vibration mean, k  is 
the observed vibration mean, rf  is the failure 
function, h is the alarm value,  ( 1α , 2α , 1β , 2β  ) 
are the Weibull reliability parameters, iXΔ  is the 
system state variation and TΔ  is the time 
derivative. 

Several methods are used in the industry for 
assessing the residual life (RL) in degraded mode, 
such as the heuristic methods for optimizing the 
cumulative sum (CUSUM).  

The prognostic system based on the analysis of 
remaining life (RUL) requires the development of 
models for representing uncertainty, quantification 
and management failures. Although these three 
tasks are different, they must be performed in order 
to guarantee the accuracy of estimation uncertainty 
in the prediction of the residual life of the studied 
equipment, to plan adequate maintenance strategy. 
The mathematical formulation of the remaining life 
using the cumulative sum (CUSUM), is given by 
the following representation [9, 19]:  
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Where the function Θf  is determined as a 
sequence:  
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When the damage is caused by vibration 
phenomena and cyclic loading is composed of nc  
load levels, the function Θf  is determined in the 
following way to calculate the value of the total 
damage. 
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The function Θf at nc  load levels Is given in the 
form: 
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For the development of analytical models of 
residual life of industrial equipment, a development 
of the reliability model of this equipment is needed. 
On the other side, when the material is subjected to 
deformation, its lifetime N  (in cycles) is given by 
the curve of MANSON-COFFIN expressed by the 
following equation [3, 21]:  
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Where aε  is the total deformation, eε  is the 
amount of the elastic deformation, pε  is the plastic 

deformation, fε ′ is the limit ductile deformation in 

tiredness, fσ ′  is the resistance limit in tiredness, E  
is the Young's modulus and b and c  are the 
constants of the material. 

For predicting the life fatigue deduced from the 
formula of MANSON COFFIN, which establishes 
that the variant strain given by vibration 
phenomena, is related to the number of breaking 
stress cycles presented in the following equation [3, 
21]: 

  C
ff

b
f

f NN
E

)2()2(
2

ε
σε

+=
Δ           (10) 

Where E  is the Young's modulus and b and c  
are the constants of the material are equal to -0.12 
and -0.6 respectively, fσ  is the strength of 
materials.  

On the other side, the metal creep is described 
by LARSON MILLER with it's parameter ( LMP ), 
which is expressed as follows [1]: 

1000
20)( +

= CNLogTLMP               (11) 

Where T is the temperature in [K], CN  is the 
time of the creep break in hours. 

For the model of interaction fatigue- creep, 
many approaches have been developed in the recent 
years to predict the safe life of the materials 
subjected to the high temperatures, where several 
rules for damage accumulation have been used. In 
this paper, two damage accumulation models are 
used; the linear equation given by MINER 
presented in the first equation of (12) and the 
nonlinear equation given by CHABOCHE given by 
the second equation of (12), which is presented in 
the following formula [23]:  
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where D  represent the damage, FP  is the 
probability of failure and FP  is the consequence of 
failure and FC  is the a measure of the 
consequence of failure. 

Indeed, the phenomenon of fatigue failure of 
mechanical components subjected to mechanical 
stresses is cyclic and which is the case of gas 
turbine systems presented in this paper. To 
understand this phenomenon mechanism  and its 
characterization, the law of cumulative linear Miner 
given by the equation (12) is the most used. This 
law allows to predict the breakage of a part under 
variable loading by calculating its damage. In this 
formulation D  represents the damage variable 
which is equal to the ratio of the number of cycles 
carried out in  to the number of cycles necessary to 
break the components iN  in given loads.  

It is supposed that, during a cycle, the creep 
passes to damage 0D  to 1D  and this damage 
increases the strain at the end of the cycle 1D  to 

2D . Equations (14) gives the creep-fatigue relation 
with interactive damage respectively for a cycle: 
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The coefficients α , β  and k  defines the 

material data obtained experimentally in the used 
reliability distribution, in both cases, the damage is 
completed when the damage accumulation reaches 
unity. Then the creep break becomes certain, where 
the prediction of the number of cycles to failure can 
be achieved using the flowing equation: 

∑ =1iD                        (15) 

The building of a prognostic system requires no 
formal knowledge of the degradation mechanisms, 
in the present case study of the studied gas turbine, 
the implementation of the prognostic is based on 
obtained data is relatively more effective for use. 
For the analysis and interpretation of deterioration 
in industrial equipment based on series of 
measurements and observations of anomalous 
phenomena, that can model the causes of 
deterioration based on the damage indicators 
measurements. this is the first step of monitoring 
which is the diagnostic step, as shown in Figure 2. 
After this stage, one has to realize the prognostic 
phase, which is the stage of evaluation of the RUL 
from the laws of degradation and degradation 

indicators determined in the first step of monitoring 
system, as shown in Figure 3. 
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3. APPLICATION RESULTS 
 
In this section, a prognostic approach is 

proposed to model the degradation of the gas 
turbine system. To perform this task, a database is 
required to forecast and to make suitable future 
decisions that are managing and affecting the state 
of operation of this industrial equipment. Once the 
data of the studied gas turbine system are collected, 
a treatment will be carried out in order to extract the 
performance indicators of the gas turbine under 
study. The proposed prognostic system is based on 
the cause / effect relationships principle of the 
studied system which leads to system degradation 
and the appearance of failure, as shown in Figure 4.  
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For the case presented in this paper, a prognosis 
approach is carried out by vibratory monitoring of a 
GE MS 3002 gas turbine, which is installed at Hassi 
R'mel gas compression station in southern  of 
Algeria as shown in Figure 5. The main parameters 
that affect directly the aging of this equipment are 
the operating temperature and the appearance of 
vibration phenomena. 

 
Fig. 5. GE MS 3002 gas turbine 

 
The data are collected over 24 hours by two 

readings; One was collected at the evening and the 
second was collected at the morning on the GE 
3002 turbine in operation. Each record contains six 
(06) variables (three input variables and the same 
three variables in output) ; The exhaust gas outlet 
temperature, the ambient intake area temperature 
and the bearing vibration, as shown in Figure 6. 
When the exhaust gas temperature reaches the 
range between 427 ° C and 520 ° C. These will 
affect the operation and the life of bearings, and are 
often interpreted as indicators of wear of the gas 
turbine blades. This inevitably will lead to vibration 
phenomenon in the gas turbine. 
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 Fig. 6: Data collected on gas turbine parameters GE 

MS3002  
 

The general revision intervention of the studied  
gas turbine which is installed at the gas 
compression station, which was performed in 2015, 
was estimated by 350 Euro /hour. This revision 
process has required two months to be achieved 
which means an amount of 504 thousands of Euro 
was paid for this maintenance intervention. 
Therefore, due to this huge problem and its 
technical and economical consequences, the 
proposed approach is proposed to identify the 

problem more quickly, where the main goal is the 
minimization of the maintenance costs and the 
increase of the system reliability. According to the 
probability of the degradation resulting from the 
proposed approach, the maintenance service will 
have an alarm in advance for a sufficient time 
before the failure or the breakdown of the gas 
turbine system will occur.  

Indeed, the diagnosis determines the prognostic 
success by its ability to provide reliable and 
accurate estimation of the current health of the 
studied gas turbine system. Nevertheless, these 
machines are subject to a very important problem, 
mainly the vibration phenomenon which is 
evaluated by the prognostic system and which can 
give information of degradation scenarios. In the 
studied case, the vibration phenomenon can also be 
defined by a progressive loss of performance of the 
equipment function, for example a shaft 
misalignment of a gas turbine, as shown in Figure 
7. 
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Fig. 7. Vibration signal of a angular misalignment axial  

 
In the same time, the major problems 

encountered in gas turbines are the wear of these 
fins especially the fixed fins and the blades of the 
1st and 2nd rows, shown in Figure 8. This wear is 
caused by:   
� The erosion phenomenon caused by poor 

filtration of the air,  
� The temperature rise up to the major 

thresholds (1200 ° C),  
� The vibration phenomenon (misalignment of 

shaft relative to the other, poor balance of 
rotor blades, starting refrigeration of the 
machine). 
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Fig. 8. Wear of the fins of a gas turbine 

 
Figure 9 shows the relative sensitivity factor of 

the stresses applied on the blade of the studied gas 
turbine. Figure 10 shows the stress cycle on the 
rotor blade (stress in Pa as a function of time). 
Figure 11 and Figure 12 present the MINER model 
and CHABOCHE model responses. 
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Fig. 9. Sensitivity factors of the stresses applied on the 
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Fig. 10. Stress cycle on the rotor blade 
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Fig. 12. CHABOCHE model 

 
The determined usual period through the model 

of damage tolerance in the studied system, by using 
the adequate safety factor to the studied turbine at a 
length of 1 micron crack damage life is 70000 
cycles. The results presented in Figure 13 show that 
the studied gas turbine is in crack limit with slow 
growth. Note that the temperature variation, shown 
in Figure 14, along the height of the blade leads to 
varying degrees of degradation and the Figure 15 
shows the rotor vibration of the studied gas turbine. 
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Fig. 15. Rotor vibration 

 
The vibration amplitudes using prognostic 

system prediction are tested, as shown in Figures 16 
and 17 these amplitudes are considered validation 
tests and performance robustness of prediction 
method. 
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Fig. 16. Vibration amplitude / Test 1 
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Fig. 17. Vibration amplitude / Test 2 

 
The proposed prognostic approach has been 

tested and validated with prediction errors 
converging to zero more quickly when the horizon 
of observation data is small, of course, the horizon 
more data, the more accurate the prognostic is poor. 
This proposed prognostic approach has allowed to 
build the components degradation model of the 
studied gas turbine, as well as the prediction of the 
vibration future state of the gas turbine components 
along an estimated time horizon. It can be said that 
the prognostic, is an approach which has the ability 
to provide reliable estimation of future health status 
of the studied gas turbine, this task can be 
performed based on the diagnosis of the current 
status, the history of failures and the achieved 
maintenance operations. Where the main aim is to 
ensure the best estimation of the remaining useful 
life of the studied system. 

 
4. CONCLUSION 
 

The work presented in this paper has dealt with 
the calculation of the availability of gas turbine 
components and the evaluation of the thermo 
mechanical stress cycle under the thermal 
evolution. This task has been achieved by building 
a failure prediction model based on a prognostic 
approach. The presented study has allowed to 
understand the effect of different stresses applied to 
the different components of the studied gas turbine 
such as the blades and their interaction for the 
evolution of creep and fatigue damage inside the 
studied gas turbine. Furthermore, the major merit of 
the presented study, that it can be used to ensure an 
optimized design of a reliable maintenance making-
decision process, especially for industrial oil and 
gas installations that are characterized by a 
complicated production requirements and 
constraints. Indeed, this work can find it 
applicability in industrial applications where it is 
difficult to have enough knowledge about the 
complex degradation phenomena, or enough past 
experience which allows to use significant 
statistical approaches due to the intrinsic 
deterioration  constraints of the studied system. 
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Finally, it can be deduced that the use of a 
prognostic system can be a promising solution for 
achieving the prediction of the expected failures 
along an estimated time, for ensuring the an 
optimised making decisions process and for 
planning an accurate and adequate maintenance 
schedule under production requirements. 
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